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Abstract Among the familial forms of amyotrophic lateral
sclerosis (fALS), 20% are associated with the Cu,Zn-superox-
ide dismutase (Sod1). fALS is characterized by the accumu-
lation of aggregated proteins and the increase in oxidative
stress markers. Here, we used the non-invasive bimolecular
fluorescence complementation (BiFC) assay in human H4
cells to investigate the kinetics of aggregation and subcellular
localization of Sod1 mutants. We also studied the effect of the
different Sod1 mutants to respond against oxidative stress by
following the levels of reactive oxygen species (ROS) after
treatment with hydrogen peroxide. Our results showed that
only 30% of cells transfected with A4VSodl showed no in-
clusions while for the other Sod1 mutants tested (L38V, G93A
and G93C), this percentage was at least 70%. In addition, we
found that 10% of cells transfected with A4VSod1 displayed
more than five inclusions per cell and that A4V and G93A
Sodl formed inclusions more rapidly than L38V and G93C
Sodl. Expression of WTSod1 significantly decreased the
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intracellular oxidation levels in comparison with expression
of fALS Sodl mutants, suggesting the mutations induce a
functional impairment. All fALS mutations impaired nuclear
localization of Sod1, which is important for maintaining ge-
nomic stability. Consistently, expression of WTSod1, but not
of fALS Sodl mutants, reduced DNA damage, as measured
by the comet assay. Altogether, our study sheds light into the
effects of fALS Sodl mutations on inclusion formation, dy-
namics, and localization as well as on antioxidant response,
opening novel avenues for investigating the role of fALS
Sod1 mutations in pathogenesis.

Keywords Sodl - fALS - Neurodegeneration - Oxidative
stress

Introduction

Amyotrophic lateral sclerosis (ALS) is an age-associated neu-
rodegenerative disease characterized by progressive muscle
paralysis and death [1]. Approximately 10% of ALS cases
are associated with autosomal dominant mutations (fALS)
[2]; among them, 20% are caused by Cu, Zn-superoxide dis-
mutase (Sod1) mutations [3]. Sod1 is an abundant and impor-
tant protein in eukaryotic cells. Its physiological function is
mainly related to the reduction of oxidative stress by
converting superoxide anions to hydrogen peroxide, which
is in turn broken down to water and oxygen by peroxidases
[4]. Recently, Sod1 was reported to translocate into the nucle-
us of yeast cells in response to oxidative stress, where it reg-
ulates the expression of antioxidant and repair genes [5].
More than 150 individual mutations have been identified in
human Sod1 (hSod1), affecting in different ways the onset and
the prognosis of fALS [6, 7]. Nevertheless, despite intense
studies, the molecular mechanisms connecting mutation
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hSod1 to fALS etiology and pathology are still elusive. The
toxicity of fALS hSod1 has been related to structural instability
[8], misfolding, aberrant enzymatic activity (lost and gain of
function) [9], and disturbance of redox homeostasis [10] as
well as to the presence of Sodl-containing aggregates in
juxtanuclear quality control compartment (JUNQ) [11]. In this
context, while transgenic mice expressing the fALS-associated
hSod1 mutants G93A and A4V exhibit ALS-like phenotypes,
animal knockouts for endogenous Sodl do not [9, 12].

In vitro studies have shown that metal coordination and
disulfide bond formation are relevant for Sodl structural sta-
bility [13—15], suggesting that an unfolded Sod1 conformation
is responsible for the increased aggregation propensity. In ad-
dition, it has been shown that aggregation propensity of re-
combinant Sodl does not always predict aggregation in a
cellular context. It is not surprising due to obvious differences
in protein concentration and surrounding environment be-
tween in vitro and in cell [16]. Therefore, in this study, we
set out to assess the contribution of fALS hSodl (A4V, L38YV,
G93A and G93C) towards protein aggregation, oxidative
stress, and DNA damage. Using the bimolecular fluorescence
complementation (BiFC) assay, which allows to observe pro-
tein interactions in vivo, we found that these Sod1 mutations
induce defective dimerization and, consequently, affect pro-
tein aggregation [17]. Importantly, we investigated, for the
first time, the dynamics of fALS Sodl aggregation in living
cells and the subcellular partitioning of Sod! inclusions in
respect to the JUNQ compartment. We found that the fALS-
associated hSod1 mutants tested are unable to overcome oxi-
dative stress and DNA damage.

Altogether, our results clearly define a common mecha-
nism of action of mutant Sod1, resulting in cytotoxicity, im-
paired function, aggregation, and in alterations in intracellular
distribution, opening novel territory for the identification of
targets for therapeutic intervention in ALS.

Material and Methods
Bimolecular Fluorescence Complementation Plasmids

The cDNA sequence of human WT (wild-type) SOD/ and the
mutants A4V, L38V, G93A, and G93C were subcloned from
the yeast plasmid YEp351 [18, 19] into the Venus-BiFC plas-
mids previously described [20]. In particular, we used a larger
N-terminal fragment of Venus (VN), corresponding to amino
acids 1-158, and a smaller C-terminal fragment (VC), corre-
sponding to amino acids 159-239. Human SOD1 cDNA (WT,
A4V, L38V, G93A and G93C) was cloned to the 3’-end of the
VN-fragment (VN-SOD) and upstream of the VC-fragment
(SODI1-VC) by PCR, using specific primers including restric-
tion enzyme sites AflII at the 5’ and Xhol at the 3'-end. The
primers used were as follows:
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VN-SOD1 (WT, L38V, G93A, G93C)

Forward: 5'-GGGCTTAAGATGGCGACGAA
GGCCGTG -3’
Reverse: 5'-CCCCTCGAGTTATTGGGCGATCCCAA
TTACACC -3’

SOD1-VC (WT, L38V, G93A, G93C)

Forward: 5'-GGGCTTAAGATGGCGACGAA
GGCCGTG -3’

Reverse: 5'-CCCCTCGAGTTGGGCGATCCCAATTA
CACCACAAG -3’

VN-SODI1 (A4V)

Forward: 5'-GGGCTTAAGATGGCGACGAA
GGTCGTGTGCG -3’

Reverse: 5-CCCCTCGAGTTATTGGGCGATCCCAA
TTACACC -3’

SOD1-VC (A4V)

Forward: 5'-GGGCTTAAGATGGCGACGAA
GGTCGTGTGCG -3’

Reverse: 5'-CCCCTCGAGTTGGGCGATCCCAATTA
CACCACAAG -3’

PCR fragments were restriction digested and cloned into
alpha-synuclein BiFC constructs by replacing the alpha-
synuclein insert [20]. All constructs were verified by DNA
sequencing.

Cell Culture and Transfections

Human neuroglioma cells (H4) were cultured in Dulbecco’s
Modified Eagle Medium (DMEM, Life Technologies-
Invitrogen, CA, USA), supplemented with 10% (v/v) fetal
bovine serum (FBS) gold and 1% (v/v) penicillin-streptomy-
cin, at 37 °C, and 5% CO, humidified atmosphere.
Transfections were performed by calcium phosphate using
equal amounts of plasmids encoding the wild-type (WT) or
mutant (A4V, L38V, G93A and G93C) hSod1 fused to Venus
BiFC system and the JUNQ substrate (mCherry-VHL). To
improve the visualization of VHL-mCherry proteins into
JUNQ compartments, 48 h transfected H4 cells were incubat-
ed with proteasome inhibitor MG132 (10 uM) for 7 h.

Fluorescence Microscopy
Forty-eight hours after transfection, H4 cells were washed

with Dulbecco’s phosphate-buffered saline (DPBS) and fixed
with 4% paraformaldehyde (PFA) for 10 min at room
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temperature (RT). Followed by three washing steps with
DPBS, cells were stained with Hoechst 33258 (Life
Technologies-Invitrogen, Carlsbad, CA, USA) (1 : 5000 in
DPBS) for 5 min and maintained in DPBS for fluorescence
microscopy. Fluorescence images were acquired with a Leica
DMI 6000B microscope (Leica, Germany), with a x40 objec-
tive. Scale bars were calculated by using ImageJ software and
were included in the figure legends together with the actual
magnification.

Quantification of Nuclear and Cytoplasmic Fluorescence
Intensities

Nuclear and cytoplasmic fluorescence intensities were quan-
tified using ImagelJ software (http://rsbweb.nih.gov/ij/). Using
the freehand tool, the nucleus and cytosol were selected and
the respective intensities were measured. The results reflect
the counting of at least 50 cells per condition.

Quantification of hSod1 Inclusions

Transfected cells were detected and scored based on the
hSodl inclusions pattern and classified into three groups: cells
without inclusions, five or less inclusions (< 5 inclusions), and
more than five inclusions (> 5 inclusions). Results reflect the
counting of at least 50 cells per condition.

Immunocytochemistry

Forty-eight hours after transfection, cells were fixed on cov-
erslips with 4% (v/v) PFA, for 15 min at RT. After washing
with X1 PBS, cells were permeabilized with 0.1% (v/v) Triton/
PBS, for 15 min at RT. After blocking with 3% (w/v) bovine
serum albumin (BSA)/PBS for 1 h at RT, cells were incubated
for 2 h with primary antibody anti-G3BP 1:200 (BD
Transduction Laboratories, kind gift of Prof. Flaviano
Giorgini, University of Leicester) diluted in blocking solution.
Cells were washed with x1 PBS before incubation with sec-
ondary Alexa Fluor antibody (mouse, 555, Life
Technologies), prepared at 1:1000 in blocking solution, for
1 h at RT. Before mounting the coverslips with Mowiol
(Calbiochem, Germany), nuclei were stained with 4',6-
diamidino-2-phenylindole (DAPI, Roth, Germany).
Immunofluorescence images were acquired with Leica DMI
6000B microscope (Leica, Germany), using x63 magnifica-
tion objective.

Live Cell Imaging

Images of H4 cells expressing BiFC-tagged hSod1 were recorded
by using the Olympus [X81-ZDC microscope system (Olympus,
Germany). Cells were maintained in DMEM, (Life Technologies-
Invitrogen, CA, USA), supplemented with 10% (v/v) FBS and 1%

(v/v) penicillin-streptomycin at 5% atmospheric CO,, with the
incubation unit set to a temperature of 37 °C. Live cells were
imaged every 30 min over a time course of 20 h overnight.

Immunoblotting

Forty-eight hours post-transfection cells were washed with
room temperature DPBS and then harvested. H4 cells were
lysed with radioimmunoprecipitation assay (RIPA) lysis buff-
er (50 mM Tris pH 8.0, 0.15 M NaCl, 0.1% (w/v) SDS, 1%
NP40 (v/v), 0.5% (w/v) Na-deoxycholate), 2 mM EDTA, and a
protease inhibitor cocktail (one tablet/10 mL) (Roche
Diagnostics, Mannheim, Germany). Protein concentration
was determined using the Bradford assay (BioRad
Laboratories, Hercules, CA, USA), and the gels were loaded
with 30 pg protein after denaturation for 5 min at 95 °C in a
protein sample buffer (125 mM of 1 M Tris HCI pH 6.8, 4%
(w/v) SDS, 0.5% (w/v) bromophenol blue, 4 mM EDTA 20%
(v/v) glycerol 10% (v/v) -mercaptoethanol). Samples were
separated on 15% (w/v) SDS-polyacrylamide gels (SDS-
PAGE) with a constant voltage of 120 V using Tris-Glycine
SDS 0.5% (w/v) running buffer (250 mM Tris, 200 mM
Glycine, 1% (w/v) SDS, pH 8.3) for 75 min. Protein transfer-
ence to PVDF membrane was carried out by using Trans-
Blot® Turbo™ Transfer System (Biorad, Hercules, CA,
USA) during 30 min with constant current at 0.3 A. The
membranes were blocked with 4% (w/v) BSA (Sigma-
Aldrich, St. Louis, MO, USA) in x1 TBS-Tween (50 mM
Tris, 150 mM NaCl, 0.05% (v/v) Tween, pH 7.5) for 60 min
at RT. The membranes were further incubated with primary
antibody 1:2000 anti-hSodl (sc-8637 Santa Cruz
Biotechnology, INC) and mouse 1:5000 anti-y-tubulin
(T5326, produced by Sigma-Aldrich, St. Louis, MO, USA)
in 4% (w/v) BSA/TBS-Tween overnight at 4 °C. After wash-
ing three times in TBS-Tween for 5 min, the membranes were
incubated for 1 h with anti-mouse IgG and anti-goat IgG
horseradish peroxidase labeled secondary antibody (GE
Healthcare, Bucks, UK) at 1 : 6000 in 4% (w/v) BSA/TBS-
Tween. Detection was carried out using luminol reagent and
peroxide solution (Millipore, Billerica, MA, USA) and ap-
plied to the membrane 1 min before scanning with in Fusion
FX (Vilber Lourmat, Collégien, France). The band intensity
was estimated using the Imagel software (NIH, Bethesda,
MD, USA) and normalized against 'y-tubulin.

Detection of DNA Damage

The comet assay, a single cell gel electrophoresis-based meth-
od, was used to the detect DNA single- and double-strand
breaks, according to the protocol previously described in
[21]. Agarose coated slides were prepared by dipping the
slides into a 1% (w/v) low-gelling temperature agarose
(PeqLab) and allowed to air-dry. Approximately 5 x 10*
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cells/mL were harvested in DPBS, mixed with 1% agarose
and placed on a precoated slide. After agarose has gelled,
alkaline lysis was performed by submerging the slides in al-
kaline buffer (1.2 M NaCl, 100 mM Na,EDTA, 0.1% (w/v)
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sodium lauryl sarcosinate, 0.26 M NaOH, pH > 13) and stored
overnight at 4 °C. After overnight lysis, the alkaline rinse
solution (0.03 M NaOH, 2 mM Na,EDTA, pH = 12.3) was
used to wash the slides three times and to conduct the
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<« Fig. 1 Sodl mutations affect oligomerization subcellular distribution of
inclusions. a Schematic representation of the bimolecular fluorescence
complementation assay (BiFC). Sodl fused to either the N- (VN-Sodl)
or C-terminal (Sod1-VC) fragments of Venus. b Representative pictures
of cells expressing fALS hSodl mutants. H4 cells expressing WT or
mutant hSodl (A4V, L38V, G93A and G93C) VN-Sodl and Sod1-VC
constructs were analyzed by fluorescence microscopy. Scale bar 10 pm.
Magnification x1000. ¢ Quantification of the number of inclusion per
cell. At least 50 cells were counted per condition and classified in three
different groups: blue, purple, and yellow bars represent the percentage of
cells without any inclusion, with five or less inclusions and cells with
more than five inclusions, respectively. Data was combined from at least
three independent experiments. One-way ANOVA, with Bonferroni
correction, was used for statistical analysis to compare differences
between WT vs mutant cells (*** p < 0.001). d Subcellular localization
of BiFC-hSod1. BiFC fluorescence intensity was quantified using
ImagelJ. For each condition, 50 cells were analyzed. e Representative
immunoblot confirming expression of VN-Sodl and Sodl1-VC
fragments. f Quantification of the immunoblots. Data is expressed as
mean + SD of at least three replicates. One-way ANOVA, with
Bonferroni correction, was used for statistical analysis with significance
level of p < 0.001 represented by three asterisks

electrophoresis for 25 min at a constant voltage of 0.6 V/cm.
Slides were neutralized with distilled water and stained with
2.5 pg/mL of propidium iodide for 20 min at RT. DNA dam-
age quantification was carried out by examining at least 50
comet images from each slide. The images were acquired with
an epifluorescence microscope (Leica DMI 6000B micro-
scope, Leica, Germany). CometScore software (TriTek
Corp) was used to determine the tail moment (product of the
tail length and the percentage of total DNA in the tail) of each
individual comet image.

Analysis of Intracellular Oxidation

The generation of intracellular reactive oxygen species (ROS)
was assessed in H4 cells expressing BiFC-tagged hSodl or
untagged hSodl (WT and mutants). Briefly, the cells were
seeded in 48-well plates and washed once with DPBS. For
ROS production measurement, cells were incubated with
25 uM 2',7'-dichlorofluorescin diacetate (DCFDA, Sigma)
at 37 °C for 30 min. Following the incubation period, two
washing steps with DPBS were performed to remove excess
probe and fluorescence intensity (excitation 485 nM; emission
535 nM) was measured using the microplate reader Infinite
M2000 PRO, Tecan. After three basal measurements, cells
were challenged with 5% (v/v) H,O,_ The fluorescence values
were recorded up to 45 min and normalized to those obtained
from non-H,O,-induced cells.

Statistical Analyses

Data were analyzed using Graph Pad Prism 5 (San Diego,
California, USA) software and were expressed as the mean
+ SD of at least three replicates. Statistical differences from
WT Sodl were calculated using one-way ANOVA and two-

way ANOVA with Bonferroni correction. Significance was
assessed for, where an asterisk corresponds to p < 0.05, double
asterisks corresponds to p < 0.01, and triple asterisks corre-
sponds to p < 0.001.

Results

fALS Mutations on hSod1 Promote Oligomerization
and Impair Nuclear Localization

In order to assess the effect of hSod1 mutations on oligomer-
ization and subcellular localization, we used the BiFC-based
assay which involves the fusion of Sod1 with non-fluorescent
fragments of the Venus protein [22]. This assay is based on the
reconstitution of a functional Venus fluorescent protein upon
dimerization of hSod1, enabling the direct visualization of the
formation of hSodl oligomers and inclusions in living cells
(Fig.1a). WT hSod1 formed only dimers/oligomers in H4 cells,
but not inclusions, unlike all other variants tested (Fig. 1b, ¢).
The inclusions formed by the hSod1 mutants tested exhibited
different sizes and shapes (Fig. 1b). In addition, the number of
inclusion per cell was also variable (Fig. 1c). For hSod1 A4V,
80% of the cells displayed small round inclusions. For the
other mutants, around 30% of the cells displayed larger and
elongated inclusions. A4V and L38V inclusions were found
scattered over the cytoplasm, and G93A and G93C formed a
larger number of inclusions per cell.

In addition, we also found that all fALS hSod1l mutations
reduced the nuclear localization of Sod1 to half of that ob-
served with WT hSod1 (Fig. 1b, d). The levels of A4V, G93C,
and L38V hSodl variants were identical, except those of
G93A, suggesting this mutant may be more unstable (Fig.
le, ).

Next, we asked whether the inclusions formed by Sodl
were localized in stress granules (SG), and costained cells
with an antibody against G3BP, an established marker of
SGs [23, 24]. We found that none of the inclusions formed
by the hSodl mutants tested in this study colocalized with
G3BP (Fig. 2).

In order to investigate the site of accumulation of hSod1 in
H4 cells, we monitored the localization of the inclusions using
von Hippel-Lindau (VHL) fused to mCherry as a marker for
the JUNQ compartment. VHL is a heterologous protein that
misfolds and forms soluble aggregates that are targeted to the
JUNQ compartment, where they colocalize with the quality
control machinery [25]. To improve the visualization of VHL-
mCherry proteins into JUNQ, H4 cells were incubated with
the proteasome inhibitor MG132 (10 uM) for 7 h, 48 h after
transfection. The inhibition of the proteasome did not change
the visualization of the hSod1 variants into JUNQ, suggesting
that the levels of fALS inclusions were sufficiently high under
normal conditions (Fig. 3).
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Sod1 BiFC
A4V

Fig. 2 fALS mutant Sodl inclusions do not colocalize with SGs.
Inclusions of Sod1 were visualized by expression of BiFC-tagged Sodl
(green), and SGs were labeled by immunostaining with an antibody

To investigate the dynamics of the formation of Sod! in-
clusions in vivo, live-cell imaging was performed during 20 h
post-transfection. The time of appearance of the first inclu-
sions was recorded and compared among the variants of
hSodl1 tested. Upon careful analysis of the data, we verified
that A4V and G93A hSodl inclusions appeared about 3 h
earlier than L38V and G93C hSodl inclusions (Fig. 4) and
persisted in the cells for more than 5 h. This clearly suggests
a distinct aggregation dynamics between A4V/G93A and
L38V/G93C fALS mutations.

fALS hSod1 Mutants Do Not Efficiently Protect
against ROS and DNA Damage

In order to assess whether BiFC-tagged Sod1 retains function,
we measured intracellular ROS levels using the oxidative
stress sensitive 2',7'-dichlorofluorescein (DCFH) probe.
Using this approach, we also analyzed whether A4V, L38YV,
G93A, and G93C fALS mutations affected hSodl function.
We found that the levels of ROS observed in cells carrying an

@ Springer
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10 ym

against G3BP (red). Nuclei were visualized with DAPI staining. Scale
bar 10 um. Magnification x1000

empty vector were similar to those observed in cells
transfected with hSodl constructs. Thus, we then asked
whether we could detect differences in the handling of ROS
in cells transfected with the hSod1 constructs. After 30 min of
exposure of the cells expressing the different hSod1 variants
to hydrogen peroxide (H,O,), we found that the WT, but not
the mutant hSod1, reduced the levels of ROS (Figs. 5 and 6).
This suggests that the fusions of WT hSodl with the BiFC
Venus protein fragments retain dismutase function, leading to
reduced levels of ROS. In contrast, the Sod1 mutants lacked
dismutase activity, suggesting the mutations affected the anti-
oxidant activity of Sod1. This suggests the following: (i) the
fusions of WT hSod1 with the BiFC Venus protein fragments
do not impair the antioxidant role of the enzyme; (ii) A4V,
L38V, G93A, and G93C fALS mutations cause hSod1 loss of
function.

Next, to investigate whether the different hSodl variants
protected from DNA damage, we measured DNA single- and
double-strand breaks using the comet assay. In this assay, the
tail moment is expressed as the relation between the tail length
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Fig. 3 hSodl mutants are
preferentially directed to the
JUNQ compartment in H4 cells.
Colocalization of the hSod1
mutants with the VHL protein. As
a control, H4 cells were
transfected with pcDNA vector.
Inclusions were visualized by
expression of BiFC-tagged Sodl
(green) and JUNQ was observed
by expression of VHL-mCherry
(red), nuclei in all experiments
were visualized with Hoechst
staining. Representative pictures
of BiFC. hSodl A4V (a), L38V
(b), G93A (c), and G93C (d)
colocalizing with JUNQ. The
inclusions formed by BiFC-
tagged hSodl A4V, L38V, and
G93C are clearly visualized when
proteasome is functional, whereas
G93A inclusions are more
observed into JUNQ after
proteasome inhibition with
MG132. Scale bar 20 pum.
Magnification x500
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Fig. 4 Live-cell imaging of cells
expressing hSodl BiFC
constructs. a Representative
frames of a time course showing
inclusions in hSod1 BiFC
expressing cells. Live-cell
imaging was initiated 24 h post-
transfection, and the pictures were
taken every 30 min for 20 h. Scale
bar 40 um. Magnification x250. b
Chronological and comparative
analyses of the dynamics of
inclusions formation. Data is
expressed as mean & SD of at least
three replicates. One-way
ANOVA, with Bonferroni
correction, was used for statistical
analysis with significance level of

##% p < 0.001, comparing
hSod1A4V with L38V, G93C,
and G93C hSodl mutations
[N
G93C
b [\

Time until the appearance of inclusions

Time (h) until the
appearance of inclusions
i

30 1

A4V L38V G93A G93C

(the smallest detectable size of migrating DNA) and the frac-  against DNA damage, confirming that the BiFC tags did not
tion of total DNA in the tail (the number of relaxed/broken affect Sod1 activity. In contrast, expression of A4V, L38V, and
pieces) [26]. Interestingly, we found that WT hSod1 protected ~ G93C hSodl mutants did not protect against DNA damage as
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Fig. 5 FALS mutants do not protect cells against ROS production.
Intracellular ROS measurements were conducted in transfected H4 cells
expressing the BiFC-tagged hSodl by using the oxidant-sensing probe
2',7"-dichlorofluorescein (DCFH). Thirty minutes after treatment with 5%
H,0,, total cellular levels of ROS were significantly lower in H4 cells
expressing BiFC-tagged WT Sodl in comparison to fALS mutations

WT hSodl, having tail moments about five times larger, sug-
gesting that these fALS Sodl mutants are not able to maintain

Fig. 6 The G93A hSodl
mutation increases DNA damage
in H4 cells. a Representative
images of comet assay. Prestained
comets with propidium iodide
(PI) were imaged using
fluorescence microscopy and tail
moments were calculated using
the Comet Score software. Scale
bar: 40 wum. Magnification: 250X.
b Levels of DNA damage in H4
cells expressing BiFC-tagged
Sod1 WT and mutants.
Quantification of double- and
single-strand DNA breaks was
made using alkaline comet assay
method. BiFC-tagged
hSodlexpressing cells as well as
control cells transfected with
empty vector were all examined
using the overnight alkaline B

method to analyze DNA damage. 50 ~
Data is expressed as mean + SD
of at least three replicates. One-
way ANOVA, with Bonferroni "E 40
correction, was used for statistical )
analysis between WT hSodl and E 304
mutants hSod1 cells with o
significance level of an asterisk,
*Hk p < 0.05 E 20 -
©
= 10+
0

30_minutes

(after 5% H,0, treatment)

A4V, L38V, G93A, and G93C levels. At basal levels, no differences in
intracellular ROS between WT, and the four Sod]l mutations were
observed. Data is expressed as mean + SD of at least three replicates.
Two-way ANOVA, with Bonferroni correction, was used for statistical
analysis with significance level of * p < 0.05, comparing WT with Sod1
mutants

genomic stability due to their reduced presence in the nucleus
(Fig. 1d). Strikingly, cells expressing the G93 A hSod1 mutant

Empty vector

T

EV

! * |

WT A4V L38V G93A G93C
Sod1 variant
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exhibited the highest levels of DNA damage, which were
about 50% higher than those observed for cells expressing
WT Sodl.

Discussion

hSod1 mutations associated with fALS are prone to
misfolding and aggregation [27]. Various in vitro and
in vivo studies have assessed the effects of fALS-associated
mutations on hSod1, in an attempt to afford novel insight into
the molecular basis of the disease [13—15, 17, 28-31]. Several
studies suggested that the toxicity of hSod1 mutants is related
with the respective amino acid substitution [32] and with al-
terations in the intracellular localization of the protein [11, 25,
33]. Moreover, the cytotoxic mechanisms exerted by Sodl
mutants have also been associated with a bulk saturation of
clearance mechanisms (e.g., proteasomal or autophagic pro-
tein degradation), saturation of chaperone function and dys-
function of mitochondria, alterations in apoptotic pathways,
and axonal disorganization and disrupted axonal transport
[34-37]. However, the precise molecular underpinnings of
fALS are still unclear.

The aggregation of mutant Sodl in living cells and the
alteration in conformation and localization have been moni-
tored by tagging the protein with fluorescent fluorophores [31,
38]. Although such approaches may alter the biological func-
tion of proteins, they enable important studies that cannot be
performed otherwise.

Given that hSod1 spontaneously dimerizes in normal con-
ditions and forms a homodimer [39], we took advantage of the
BiFC assay, based on the complementation of two non-
fluorescent fragments of the fluorescent protein, in order to
investigate the effect of fALS-associated mutants on hSodl
dimerization, oligomerization and aggregation, and on func-
tional readouts of activity.

Initially, we observed that BiFC-tagged Sod1 A4V, L38V,
G93A, and G93C dimerized and formed intracellular inclu-
sions. This effect was particularly strong for the A4V mutant,
which significantly increase in the percentage of cells with
inclusions.

It is still unclear whether Sodl inclusions are toxic, and
additional studies using different model systems will be in-
strumental to address this. Recent studies have connected pro-
tein inclusions with SGs [24]. Using spinal cord motor neu-
rons [40] or HeLa cells as models [23], it was shown that
inclusions formed by G93A and A4V Sodl mutants colocal-
ize with G3BP, an established marker of SGs. In our study, we
did not observe colocalization of the inclusions formed with
G3BP, suggesting differences in the types of inclusions
formed. Our observations are consistent with those reported
recently, where inclusions of G93A Sod1 did not colocalize
with SGs in HEK 293 cells [40]. Thus, our results suggest that,
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in normal conditions, the Sod1 mutants studied do not colo-
calize with SGs.

Sodl aggregation is directly dependent of dimer disso-
ciation, which is promoted by mutations that weaken the
interactions at the dimer interface [41, 42]. FRET analysis
indicated that fALS mutations impaired Sod1 dimerization,
consequently affecting protein aggregation [17]. In addi-
tion, it was reported that mutant Sod1 tagged with YFP
formed cytoplasmic inclusions in cultured cells, in contrast
to WT Sodl [43]. Consistently, WT Sod1-GFP chimeric
protein maintain its dismutase activity and does not really
form inclusions when expressed in PC12 cultured cells
[44]. Thus, considering only the number of inclusions
counted per cell, the A4V mutation promoted the most
harmful effect in comparison to the other mutations.
Live-cell imaging revealed that A4V and G93 A mutations
formed inclusion faster than G93C and L38YV, suggesting,
for the first time, that Sodl variants A4V and G93A need
the same time to aggregate and have more propensities to
form inclusions over a time course. It has been shown that
A4V variant had the most considerable dimerization defect
and the strongest Sodl aggregation activity, which is in
agreement with the earlier aggregate formation observed
in Fig. 3 [17]. In addition, G93A accumulated at lower
levels, indicating that this altered protein is more rapidly
degraded in cells. In comparison to other mutations related
to fALS, G93A showed early disease onset related to the
worst prognostic [45]. Moreover, in vitro studies that in-
vestigated the correlation between the propensity for ag-
gregation and conformational stability of Sodl, showed
that G93A have the highest conformation instability com-
pared to other mutations, including A4V [46]. These
fALS-linked mutations are located throughout the three-
dimensional structure of the Sodl protein. The G93A is
located on turns of -sheets of the (-barrel, and the A4V
mutation is at the dimer interface. Studies using spectro-
scopic techniques [47, 48], thermal stability measurement
[49], and disulfide reduction [32] have demonstrated that
G93A and A4V mutation contribute to a reduction in pro-
tein stability, which may be related to their toxic gain of
function. It has been shown that accumulation of toxic
G93A Sodl in the JUNQ compartment interferes with the
quality control function, inhibiting the degradation of other
misfolded proteins by sequestering Hsp70, thereby
blocking proteasomal function. It was previously demon-
strated that Sod1 A4V is a JUNQ-like aggregate which
colocalizes with ubiquitin [33]. Thus, we verified whether
the BiFC-tagged G93A Sodl was indeed directed to
JUNQ. Remarkably, we observed that all mutations ana-
lyzed colocalized with VHL protein. Thus, the mutant
Sodl1 localization in the JUNQ was confirmed a well-
established hallmark feature of fALS, which increases the
harmful effects of the mutations.
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In addition to the observation of Sod1 inclusions, we ob-
served that about 40% of dimeric Sodl WT is located in the
nucleus, while only 20% of mutant Sodl was found in this
compartment, showing a significant increase in fluorescence
intensity of mutSod1 in the cytoplasm. These results indicate
that the presence of Sodl mutations decreases the ability to
this protein to move into the nucleus. It has been shown in
yeast cells that exposure to oxidants is sufficient to promote
Sod1 nuclear localization through Dun1-Sod1 interaction and
regulation of Sodl by phosphorylation at S60, 99 [5]. In the
nucleus, Sodl affects the expression of oxidative resistance
and repair genes [5] and interacts with DNA [50].

In this study, we confirmed that BiFC-tagged Sod1 mutants
respond differently to mild exposure to H,O, in comparison to
WT Sodl. Sodl mutants do not properly respond against in-
tracellular ROS production. One possible explanation is that
A4V, GI93A, G93C, and L38V hSodl as aggregates at cyto-
plasm are unable to enter the nucleus (Fig. 1d). Another pos-
sibility is that the fALS mutations impair the ROS signaling
that mediates hSod1 nuclear translocation; by remaining at
cytoplasm, fALS hSodl mutants aggregate.

Although all fALS-associated hSodl mutants showed a
similar distribution between cytosol and nucleus (80 versus
20%), leading to an impaired ability to prevent DNA damage
when compared to WT Sodl, G93A hSodl exhibited the
worst performance. The levels of damage were twofold higher
in G93A hSodl expressing cells than in cells which contain
only the endogenous Sod1, empty vector, meaning that G93A
hSodl is non-active and harmful with respect to DNA
protection.

Our study reveals an in vivo aggregation timeline between
Sodl mutants, which were probably responsible to induce
DNA damage as well as a decreased nuclear localization in
comparison to the WT form. Regarding the stages of ALS
disease when Sod1 aggregates are formed, some aspects have
been reported. Sod1 aggregate was found to accumulate at the
highest levels as symptoms appear in mouse models of fALS
[45, 51]. Moreover, inclusion-like structures were seen in
symptomatic mice that express the ALS mutant G85R-
SODI, especially in mice motor neuron at the end-stage pa-
ralysis [52]. More recently, a timing of mutant Sod1 aggrega-
tion was reported in prion-like transmission studies with
G85R-Sod1 expressing mice [53]. ALS patients harboring
the A4V or G93A mutation have a short mean survival time
of only about 1.5 years post diagnosis [17, 54]. On the con-
trary, G93C mutation patients present a long survival time
[17]. The ephemeral survival time of fALS patients carrying
G93A or A4V mutations correlates with the fastest aggrega-
tion observed in cells in the current study. Ultimately, our
findings may impact on the development of therapeutic strat-
egies aimed at modulating the aggregation of Sodl, by pro-
viding novel and detailed information about the behavior of
WT and mutant Sodl in living cells.
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